闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣椤愯姤鎱ㄥ鍡楀幊缂傚倹姘ㄩ幉绋款吋閸澀缃曢梺璇查閸樻粓宕戦幘缁樼厱闁哄洢鍔屾禍鐐烘煥濞戞瑧娲存慨濠呮閹瑰嫰濡搁妷锔惧綒闂備胶鎳撻崵鏍箯閿燂拷
闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿极閹剧粯鍋愰柛鎰紦閻㈠姊绘担鐟邦嚋缂佽鍊胯棟妞ゆ牗绮岄ˉ姘辨喐閻楀牆绗氶柣鎾寸洴閺屾盯濡烽敐鍛闂佽绻嗛弲鐘诲箖瀹勬壋鏋庢繛鍡樺灩閺嗐倝姊洪崫鍕缂佸鍏樼瘬濞撴埃鍋撻柡灞剧洴楠炴ḿ鎹勯悜妯间邯闁诲孩顔栭崰鏍€﹂悜钘夋瀬闁瑰墽绮崑鎰版煠绾板崬澧剧紒鍗炲级缁绘繂鈻撻崹顔界亶闂佹寧娲嶉弲鐘茬暦閵忥紕顩烽悗锝庝簽閻e搫鈹戦悙鍙夘棞婵炲瓨鑹鹃妴鎺撶節濮橆厾鍘梺鍓插亝缁诲啴藟濠婂牊鈷戦柛娆忣槺閻帡鏌″畝鈧崰鏍х暦濞嗘挸围闁糕剝顨忔导锟�闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢幘鑼槮闁搞劍绻冮妵鍕冀閵娧呯厐闂佹悶鍔嶇换鍫ュ蓟閻斿吋鍊锋い鎺戝€归懣鍥⒑闁偛鑻晶顕€鏌涙繝鍌涘仴鐎殿噮鍋婂畷姗€顢欓懖鈺嬬床婵犳鍠楅敋闁哥喎娼¢幃鈥澄熺拋宕囩畾闂佺粯鍔︽禍婊堝焵椤掍胶澧遍柡渚囧櫍楠炴帡寮崫鍕濠殿喗岣块崢褎鏅堕鈧幗鍫曟倷鐎涙ê寮垮┑锛勫仩椤曆勭妤e啯鈷戦柛婵嗗濠€浼存煟閳哄﹤鐏″ǎ鍥э躬閹粓鎸婃径宀婂悈婵犵數濞€濞佳囨晝閵堝鏁傛い鎾跺枔缁♀偓缂佸墽澧楄摫妞ゎ偄顦甸弻鐔煎礄閵堝棗顏�闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿极閹剧粯鍋愰柛鎰级閻ゅ嫰姊绘担鍛婂暈闁圭ǹ妫濆畷銊╊敍濠婂啫鑴梻鍌氬€风粈浣革耿闁秵鎯為幖娣妼闂傤垱銇勯弴妤€浜鹃悗娈垮櫘閸嬪懐鎹㈠┑瀣闁靛ǹ鍎版竟鏇炍旈悩闈涗粶闁诲繑绻堝畷婵嗩潩椤撴粈绨婚梺鎸庢椤曆囨倶閻樼粯鎳氶柣鎰摠閸欏繑淇婇悙棰濆殭濞存粓绠栧娲传閸曨剚鎷遍梺鐑╂櫓閸ㄨ鲸绌辨繝鍥ㄥ€荤紒娑橆儐閺呪晠姊虹紒妯诲碍閻庡灚甯掑玻鎸庣鐎n偀鎷绘繛杈剧秬濡嫰藟瀹ュ棎浜滈柡鍥╁枔閻帗顨ラ悙鑼闁轰焦鎹囬弫鎾绘晸閿燂拷濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣銏犲閺佸﹪鏌″搴″箹缂佹劖顨婇弻鈥愁吋鎼粹€崇闂佺ǹ顑嗛崹鍧楀蓟閿濆顫呴柕蹇婂墲濮e嫭绻涢幋鐐村碍缂佸缍婂濠氭偄閸忕厧鈧粯淇婇婊冨姦闁瑰嘲缍婇幃妤冩喆閸曨剛顦ラ悗娈垮枛婢у酣骞戦姀鐘闁靛繒濮撮懓鍨攽閳藉棗鐏犻柟纰卞亯閵嗘牜绱撻崒姘偓宄懊归崶銊d粓缂佸顕冲☉銏犵妞ゆ棁澹堥幗鏇㈡⒑閻愯棄鍔滈柛鎾村哺瀹曘儳鈧綆鍠栫粻鍦磼椤旂厧甯ㄩ柛瀣尭閻g兘宕剁捄鐑樻毉闂傚倸鍊搁崐椋庢濮樿泛鐒垫い鎺戝€告禒婊堟煠濞茶鐏¢柡鍛板煐閵堬綁宕橀埡鍐ㄥ箥闂備礁鎲¢崹顖炲磹閺嶎偀鍋撳鐐闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿极閹剧粯鍋愰柛鎰紦閻㈠姊绘笟鈧ḿ褑鍣归梺绋挎湰缁本鏅堕悙顒傜瘈闁汇垽娼ф禒婊勪繆椤愶絿鎳囨鐐村姈缁绘繂顫濋鍌︾吹闂備胶鎳撴晶鐣屽垝椤栫偞鍋傞柡鍥ュ灪閻撴盯鏌涢妷锝呭姎濠碘€炽偢閺岋綀绠涢弴鐐╂瀰闂佸搫鏈粙鎾寸閿旂偓瀚氶柟缁樺俯濞煎酣姊绘担鍛婃儓闁哄牜鍓熼幆鍕敍閻愬弶妲梺鍛婃处閸ㄦ壆绮堥崘顔界厽闁逛即娼ф晶浼存煛閸℃劕鍔︽慨濠勭帛閹峰懘鎸婃竟顓熸崌閺屾盯鍩℃笟濠呭惈濡ょ姷鍋涚换姗€寮幘缁樻櫢闁跨噦鎷�闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞妞ゆ帒锕︾粙蹇旂節閵忥絾纭鹃懝鍛磽閸屾稓顣茬紒缁樼洴瀹曞崬螣閾忛€涙闁诲氦顫夊ú姗€鎮¢敓鐘茶摕闁绘棁銆€閸嬫挸鈽夊▎瀣窗闁荤姵鍔忛弲婊呮崲濞戞﹩鍟呮い鏃囧吹閻╁海绱撴担鍝勑ラ柟铏崌濠€渚€姊洪幐搴g畵闁瑰啿绻橀獮澶愬川婵炲じ绨婚梺瑙勫劤閻°劑濡靛┑鍥︾箚妞ゆ劑鍨洪崵鍥ㄣ亜閵忊剝绀嬪┑顔瑰亾闂佺偨鍎查崜姘i柆宥嗏拻濞达絿鍎ら崵鈧梺纭咁嚋缁绘繈鐛崘顔肩<闁绘劕寮跺Σ顒€鈹戦悙鏉戠仧闁搞劍妞藉鏌ュ箹娴e湱鍙嗛梺缁樻礀閸婂湱鈧熬鎷�缂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛濠傛健閺屻劑寮撮悙娴嬪亾閸洖鐒垫い鎺嗗亾闁哥喐娼欓悾鐑藉础閻戝棙瀵岄梺闈涢獜缁辨洟鍩婇弴鐘电<婵°倕鍟弸娑㈡煕閳规儳浜炬俊鐐€栫敮鎺斺偓姘ュ姂閸┾偓妞ゆ垼娉曢ˇ锕傛煃鐠囨煡鍙勬鐐疵悾鐑藉炊瑜夐崑鎾绘倷瀹割喗瀵岄梺闈涚墕濡宕告繝鍥ㄧ厱閻庯綆鍋呯亸鐢电磼鏉堛劌娴柟顕呬簻閳诲氦绠涢弬娆炬П闂備胶绮幐璇裁洪悢鐓庣畺婵せ鍋撻柟顔界懇濡啫鈽夊Δ鈧ˉ姘舵⒒娴e湱婀介柛鏂跨Ч瀹曞綊宕烽鐕佹綗闂佸湱鍎ら幐鍝ユ閻愬绠鹃柟瀵稿仧閹冲啯銇勮箛銉﹀闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿极閹剧粯鍋愰柤纰卞墻濡查亶鏌i悢鍝ョ煂濠⒀勵殘閺侇噣骞掑Δ鈧崹鍌炴煕瀹€鈧崑鐐烘偂閻斿吋鐓忛煫鍥э攻閸ゅ鏌涢敂璇插箻濞戞挸绉撮湁闁绘挸娴烽幗鐘绘煕婵犲嫭鏆柡灞诲妼閳规垿宕卞☉鎵佸亾濡も偓闇夋繝濠傛噹娴犻亶鏌$仦鐣屝ч柟顔惧厴楠炲秹顢欒缂嶄線寮婚弴銏犵倞鐟滃秹顢旈鐘亾濞堝灝娅橀柛鎾跺枛閻涱噣骞囬鐔峰妳闂佺偨鍎卞璺何熸繝鍥ㄢ拻闁稿本鐟ㄩ崗宀€绱掗鍛仸妤犵偞鐗犻、鏇㈡晝閳ь剛绮婚鐐寸叆闁绘洖鍊圭€氾拷
婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繐霉閸忓吋缍戦柛銊ュ€搁埞鎴﹀磼濠ф挸缍婂浼村Ψ閳哄倻鍘搁悗骞垮劚妤犳悂鐛Δ鍛厱閻庯綆浜堕崕鏃堟煛瀹€瀣瘈鐎规洖鐖奸崺锟犲焵椤掑倹顫曢柟鎯板Г閻撶喖鏌i弮鍋冲綊鎮靛Δ鍛厸闁告劑鍔庢晶鏇犫偓鐟版啞缁诲啴濡甸崟顖氱閻犺櫣鍎ら悵鈥斥攽閳藉棗浜為柛鐘崇墪椤繒绱掑Ο璇差€撻柣鐔哥懃鐎氼剚绂掗埡鍛拺缂佸鐏濋銏㈢磼椤旂厧顒㈢紒鍌涘浮閺佸啴宕掑☉妯兼濠电姰鍨归崢婊堝疾椤忓牆绠柨鐕傛嫹闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞妞ゆ帒顦伴弲顏堟⒑閸濆嫮鈻夐柛妯垮亹缁牓宕奸悢铏诡啎闂佺硶鍓濊摫閻忓繈鍔戦弻宥堫檨闁告挶鍔庣划濠氬箣閿旇棄浠奸梺璺ㄥ枔婵绮婚妷鈺傜叄闊浄绲芥禍鐐裁瑰⿰鍕噰婵﹦绮幏鍛存偡闁箑娈濇繝鐢靛仜瀵爼鎮ч悩鑼殾闁归偊鍨禍褰掓煙閻戞ɑ灏柍褜鍓欏ḿ锟犲箖瑜版帒鐐婄憸搴ㄥ煝閺囥垺鐓熼柡鍌涘椤ャ垽鏌$仦璇测偓婵嬬嵁閺嶃劍濯撮悷娆忓閺侇亜鈹戦悩鎰佸晱闁哥姵鐗犻幃褔骞樼拠鑼舵憰闂侀潧鐗嗗ú锔锯偓姘皑閹插憡鎯旈敐鍌氫壕婵ḿ鍋撶€氾拷闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊瑜忛弳锕傛煕椤垵浜濋柛娆忕箻閺屸剝寰勭€n亝顔呭┑鐐叉▕娴滄繈寮插┑瀣厱閻忕偛甯哄璺虹;闁规崘顕х粈鍐┿亜閺冨倸甯堕柤鏉跨仢閳规垿鎮欓弶鎴犱桓闂佹寧宀搁弻娑㈠Χ閸℃浼屽┑顔硷攻濡炶棄鐣烽妸锔剧瘈闁稿本顕撮弴鐔虹閻庢稒岣块惌瀣磼鐠囨彃顏柛鈹惧亾濡炪倖甯婇懗鍫曘€傞懠顑藉亾閸忓浜鹃梺褰掓?缁€渚€鎷戦悢鍝ョ闁瑰瓨鐟ラ悘鈺呮煕濡や礁鈻曢柡灞炬礃缁绘盯宕归鐓庮潥闂備胶绮换宥夊闯閿濆拋娼栨繛宸簻娴肩娀鏌曟径鍫濆姕闁绘縿鍨藉娲偡閺夋寧顔€闂佺懓鍤栭幏锟�闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿极閹剧粯鍋愰柛鎰紦閻㈠姊绘担鐟邦嚋缂佽鍊胯棟妞ゆ牗绮岄ˉ姘辨喐閻楀牆绗氶柣鎾寸洴閺屾盯濡烽敐鍛闂佽绻嗛弲鐘诲箖瀹勬壋鏋庢繛鍡樺灩閺嗐倝姊洪崫鍕缂佸鍏樼瘬濞撴埃鍋撻柡灞剧洴楠炴ḿ鎹勯悜妯间邯婵°倗濮烽崑娑㈠疮椤愩儳浜介梺鑽ゅУ娴滀粙宕濇惔銊ョ骇闁归棿鐒﹂埛鎴︽偡濞嗗繐顏╅柛鏂诲€曢…鑳槻闂佸府缍侀妴浣糕枎閹惧磭顓哄┑鐘茬仛閸旀牜鈧潧鐭傚娲濞戞艾顣哄┑鈽嗗亝閻熝呭垝濮樿泛閿ゆ俊銈勮兌閸樼敻姊洪崨濠傜仧闁稿﹥鐗滈埀顒佺啲閹凤拷闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊瑜忛弳锕傛煕椤垵浜濋柛娆忕箻閺屸剝寰勭€n亝顔呭┑鐐叉▕娴滄繈寮插┑瀣厱閻忕偛甯哄璺虹;闁规崘顕х粈鍐煃鏉炴媽鍏岀紒鎰仱濮婇缚銇愰幒鎴滃枈闂佸憡锚閵堢ǹ鐣峰⿰鍫澪╅柕澶堝灪閺傗偓闂備胶绮玻璺ㄥ垝椤栨埃妲堢憸搴㈢┍婵犲浂鏁冩い鎰╁灩缁犲湱鈧厜鍋撻柨婵嗘噺閸嬨儲顨ラ悙鑼фい銏$懇閹攱锛愭担鍓叉闂傚倷鑳舵灙缂佺粯鍔欒棟妞ゆ牗绋撻々鎻捨旈敐鍛殲闁抽攱鍨块弻娑樷槈濮楀牆浼愭繝娈垮櫙缁犳垿婀佸┑鐘诧工鐎氬嘲鈻撳⿰鍛亾鐟欏嫭绀冮柛銊ユ健瀵偊骞樼紒妯绘闂佽法鍣﹂幏锟�闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵姘ㄧ槐鎾诲磼濞嗘帒鍘$紓渚囧櫘閸ㄨ泛鐣峰┑鍡忔瀻闁规儳纾悾娲偡濠婂嫬鐏╃紒顔款嚙閳藉顫滈崱妯哄厞闂備胶枪缁绘劙宕ョ€n剚顐芥い鎾卞灪閳锋帡鏌涚仦鎹愬闁逞屽墰閸忔﹢骞婂Δ鍛殝闁汇垹鍚€缁绱撻崒姘偓鐑芥嚄閸撲礁鍨濇い鏍仜缁€澶嬬箾閸℃ɑ灏电€规挷鐒︽穱濠囧Χ閸屾矮澹曟俊銈嗩殢娴滄瑩宕¢崘鑼殾濠靛倸鎲¢崑鍕偓鐟板濠㈡﹢藟閹烘鈷掗柛灞剧懄缁佺増绻涙径瀣鐎规洘濞婇弫鍐磼濮橀硸鍞甸梻浣芥硶閸o箓骞忛敓锟�闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊瑜忛弳锕傛煕椤垵浜濋柛娆忕箻閺屸剝寰勭€n亝顔呭┑鐐叉▕娴滄粍鍎梻浣瑰閺屻劏銇愰悙闈涘灊闁圭虎鍠楅埛鎺楁煕鐏炲墽鎳嗛柛蹇撶焸閺屾稒鎯旈敐鍡樻瘓閻庤娲樼划宀勫煘閹寸姭鍋撻敐搴′簻濞寸媭鍙冨娲礃閸欏鍎撻梺鐟板暱濞撮鍒掔拠宸僵闁煎摜鏁搁崢閬嶆倵閸忓浜鹃梺閫炲苯澧寸€规洘鍨甸埥澶婎潩閸欐ḿ鐟濇繝娈垮枟鏋瀛樻倐瀹曚即骞囬鐘电槇婵犵數濮撮崐缁樻櫠閺囥垺鐓熼柕鍫濋濞呭秹鏌$仦鐣屝ユい褍鍊块弻鐔煎礄閵堝棗顏�闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸婂潡鏌ㄩ弴鐐测偓鍝ョ不閺嶎厽鐓曟い鎰剁稻缁€鈧紒鐐劤濞硷繝寮婚妶鍥ф瀳闁告鍋涢~顐︽⒑濞茶骞楅柣鐔叉櫊瀵鎮㈢悰鈥充壕闁汇垻娅ヨぐ鎺斺偓宄扳攽閻樻剚鍟忛柛鐘愁殕缁绘稒绻濋崒銈嗙稁濠电偛妯婃禍鍫曞极閸℃稒鐓冪憸婊堝礈濞戞艾鍨濋柡鍐ㄥ€甸崑鎾绘濞戞瑦鍠愭繛鎴炴尭缁夊綊寮婚敐澶婎潊闁绘ê鍟块弳鍫ユ⒑缂佹ɑ灏伴柣鐔叉櫅椤繐煤椤忓秵鏅i梺闈浤涢崨顔筋啅闂傚倷娴囬褏鎹㈠Δ浣典粓闁告縿鍎插畷鍙夌箾閹寸偟顣查悗姘皑閹插憡鎯旈敐鍌氫壕婵ḿ鍋撶€氾拷
梦远书城 > 史籍 > 清史稿 | 上页 下页
康熙甲子元法下


  月食用数

  朔策二十九日五三〇五九三。

  望策十四日七六五二九六五。

  太阳平行,朔策一十万四千七百八十四秒,小余三〇四三二四。

  太阳引数,朔策一十万四千七百七十九秒,小余三五八八六五。

  太阴引数,朔策九万二千九百四十秒,小余二四八五九。

  太阴交周,朔策十一万〇四百十四秒,小余〇一六五七四。

  太阳平行,望策十四度三十三分十二秒〇九微。

  太阳引数,望策十四度三十三分〇九秒四十一微。

  太阴引数,望策六宫十二度五十四分三十秒〇七微。

  太阴交周,望策六宫十五度二十分〇七秒。

  太阳一小时平行一百四十七秒,小余八四七一〇四九。

  太阳一小时引数一百四十七秒,小余八四〇一二七。

  太阴一小时引数一千九百五十九秒,小余七四七六五四二。

  太阴一小时交周一千九百八十四秒,小余四〇二五四九。

  月距日一小时平行一千八百二十八秒,小余六一二一一〇八。

  太阳光分半径六百三十七。

  太阴实半径二十七。

  地半径一百。

  太阳最高距地一千〇十七万九千二百〇八,与地半径之比例,为十一万六千二百。

  太阴最高距地一千〇十七万二千五百,与地半径之比例,为五千八百一十六。

  朔应二十六日三八五二六六六。

  首朔太阳平行应初宫二十六度二十分四十二秒五十七微。

  首朔太阳引数应初宫十九度一十分二十七秒二十一微。

  首朔太阴引数应九宫十八度三十四分二十六秒十六微。

  首朔太阴交周应六宫初度三十分五十五秒十四微,余见日躔、月离。

  推月食法

  求天正冬至,同日躔。

  求纪日,以天正冬至日数加一日,得纪日。

  求首朔,先求得积日同月离。置积日减朔应,得通朔。上考则加。以朔策除之,得数加一为积朔。余数转减朔策为首朔。上考则除得之数即积朔,不用加一。余数即首朔,不用转减。

  求太阴入食限,置积朔,以太阴交周朔策乘之,满周天秒数去之,余为积朔太阴交周。加首朔太阴交周应,得首朔太阴交周。上考则置首朔交周应减积朔交周。又加太阴交周望策,再以交周朔策递加十三次,得逐月望太阴平交周。视某月交周入可食之限,即为有食之月。交周自五宫十五度〇六分至六宫十四度五十四分,自十一宫十五度〇六分至初宫十四度五十四分,皆可食之限。再于实交周详之。

  求平望,以太阴入食限月数与朔策相乘,加望策,再加首朔日分及纪日,满纪法去之,余为平望日分。自初日起甲子,得平望干支,以刻下分通其小余,如法收之。初时起子正,得时刻分秒。

  求太阳平行,置积朔,加太阴入食限之月数为通月,以太阳平行朔策乘之。满周天秒数去之,加首朔太阳平行应,上考则减。又加太阳平行望策,即得。

  求太阳平引,置通月,以太阳引数朔策乘之,去周天秒数,加首朔太阳引数应,上考则减。又加太阳引数望策,即得。

  求太阴平引,置通月,以太阴引数朔策乘之,去周天秒数,加首朔太阴引数应,上考则减。又加太阴引数望策,即得。

  求太阳实引,以太阳平引,依日躔法求得太阳均数,以太阴平引,依月离法求得太阴初均数,两均数相加减为距弧。两均同号相减,异号相加。以月距日一小时平行为一率,一小时化秒为二率,距弧化秒为三率,求得四率为距时秒,随定其加减号。两均同号,日大仍之,日小反之;两均一加一减,其加减从日。又以一小时化秒为一率,太阳一小时引数为二率,距时秒为三率,求得四率为秒。以度分收之,为太阳引弧。依距时加减号。以加减太阳平引,得实引。

  求太阴实引,以一小时化秒为一率,太阴一小时引数为二率,距时秒为三率,求得四率为秒。以度分收之,为太阴引弧。依距时加减号。以加减太阴平引,得实引。

  求实望,以太阳实引复求均数为日实均,并求得太阳距地心线。即实均第二平三角形对正角之边。以太阴实引复求均数为月实均,并求得太阴距地心线。法同太阳。两均相加减为实距弧。加减与距弧同。依前求距时法,求得时分为实距时,以加减平望,加减与距时同。得实望。加满二十四时,则实望进一日,不足减者,借一日作二十四时减之,则实望退一日。

  求实交周,以一小时化秒为一率,太阴一小时交周为二率,实距时化秒为三率,求得四率为秒,以度分收之,为交周距弧。以加减太阴交周,依实距时加减号。又以月实均加减之,为实交周。若实交周入必食之限,为有食。自五宫十七度四十三分〇五秒至六宫十二度十六分五十五秒,自十一宫十七度四十三分〇五秒至初宫十二度十六分五十五秒,为必食之限。不入此限者,不必布算。

  求太阳黄赤道实经度,以一小时化秒为一率,太阳一小时平行为二率,实距时化秒为三率,求得四率为秒,以度分收之,为太阳距弧。依时距时加减号。以加减太阳平行,又以日实均加减之,即黄道经度。又用弧三角形求得赤道经度。详月离求太阴出入时刻条。

  求实望用时,以日实均变时为均数时差,以升度差黄赤道经度之较。变时为升度时差,两时差相加减为时差总,加减之法,详月离求用时平行条。以加减实望,为实望用时。距日出后日入前九刻以内者,可以见食。九刻以外者全在昼,不必算。

  求食甚时刻,以本天半径为一率,黄白大距之余弦为二率,实交周之正切为三率,求得四率为正切,检表得食甚交周。与实交周相减,为交周升度差。又以太阴一小时引数与太阴实引相加,依月离求初均法算之,为后均。以后均与月实均相加减,两均同号相减,异号相加。得数又与一小时月距日平行相加减,两均同加,后均大则加,小则减。两均同减,后均大则减,小则加。两均一加一减,其加减从后均。为月距日实行。乃以月距日实行化秒为一率,一小时化秒为二率,交周升度差化秒为三率,求得四率为秒。以时分收之,得食甚距时。以加减实望用时,实交周初宫六宫为减,五宫十一宫为加。为食甚时刻。

  求食甚距纬,以本天半径为一率,黄白大距之正弦为二率,实交周之正弦为三率,求得四率为正弦,检表得食甚距纬。实交周初宫五宫为北,六宫十一宫为南。

  求太阴半径,以太阴最高距地为一率,地半径比例数为二率,太阴距地心线内减去次均轮半径为三率,求得四率为太阴距地。又以太阴距地为一率,太阴实半径为二率,本天半径为三率,求得四率为正弦。检表得太阴半径。

  求地影半径,以太阳最高距地为一率,地半径比例数为二率,太阳距地心线为三率,求得四率为太阳距地。又以太阳光分半径内减地半径为一率,太阳距地为二率,地半径为三率,求得四率为地影之长。又以地影长为一率,地半径为二率,本天半径为三率,求得四率为正弦,检表得地影角。又以本天半径为一率,地影角之正切为二率,地影长内减太阴距地为三率,求得四率为太阴所入地影之阔。乃以太阴距地为一率,地影之阔为二率,本天半径为三率,求得四率为正切,检表得地影半径。

  求食分,以太阴全径为一率,十分为二率,并径太阴地影两半径相并。内减食甚距纬之较并径不及减距纬即不食。为三率,求得四率即食分。

  求初亏、复圆时刻,以食甚距纬之余弦为一率,并径之余弦为二率,半径千万为三率,求得四率为余弦,检表得初亏、复圆距弧。又以月距日实行化秒为一率,一小时化秒为二率,初亏、复圆距弧化秒为三率,求得四率为秒。以时分收之,为初亏、复圆距时。以加减食甚时刻,得初亏、复圆时刻。减得初亏,加得复圆。

  求食既、生光时刻,以食甚距纬之余弦为一率,两半径较之余弦为二率,半径千万为三率,求得四率为余弦,检表得食既、生光距弧。又以月距日实行化秒为一率,一小时化秒为二率,食既、生光距弧化秒为三率,求得四率为秒。以时分收之,为食既、生光距时。以加减食甚时刻,得食既、生光时刻。减得食既,加得生光。

  求食限总时,以初亏、复圆距时倍之,即得。

  求太阴黄道经纬度,置太阳黄道经度,加减六宫,过六宫则减去六宫,不及六宫,则加六宫。再加减食甚距弧,又加减黄白升度差,求升度差法,详月离求黄道实行条。得太阴黄道经度。求纬度,详月离。

  求太阴赤道经纬度,详月离求太阴出入时刻条。

  求宿度,同日躔。

  求黄道地平交角,以食甚时刻变赤道度,每时之四分变一度。又于太阳赤道经度内减三宫,不及减者,加十二宫减之。余为太阳距春分赤道度。两数相加,满全周去之。为春分距子正赤道度。与半周相减,得春分距午正东西赤道度。过半周者,减去半周,为午正西。不及半周者,去减半周,为午正东。春分距午正东西度过象限者,与半周相减,余为秋分距午正东西赤道度。秋分距午东西,与春分相反。以春秋分距午正东西度与九十度相减,余为春秋分距地平赤道度。乃用为弧三角形之一边,以黄赤大距及赤道地平交角即赤道地平上高度,春分午西、秋分午东者用此。若春分午东、秋分午西者,则以此度与半周相减用其余。为边傍之两角,求得对边之角,为黄道地平交角。春分午东、秋分午西者,得数即为黄道地平交角。春分午西、秋分午东者,则以得数与半周相减,余为黄道地平交角。

  求黄道高弧交角,以黄道地平交角之正弦为一率,赤道地平交角之正弦为二率,春秋分距地平赤道度之正弦为三率,求得四率为正弦,检表得春秋分距地平黄道度。又视春秋分在地平上者,以太阴黄道经度与三宫、九宫相减,春分与三宫相减,秋分与九宫相减。余为太阴距春秋分黄道度。春秋分宫度大于太阴宫度,为距春秋分前;反此则在后。又以春秋分距地平黄道度与太阴距春秋分黄道度相加减,为太阴距地平黄道度,春秋分在午正西者,太阴在分后则加,在分前则减;春秋分在午正东者反是。随视其距限之东西。春秋分在午正西者,太阴距地平黄道度不及九十度为限西,过九十度为限东;春秋分在午正东者反是。乃以太阴距地平黄道度之余弦为一率,本天半径为二率,黄道地平交角之余切为三率,求得四率为正切,检表得黄道高弧交角。

  求初亏、复圆定交角,置食甚交周,以初亏、复圆距弧加减之,得初亏、复圆交周。减得初亏,加得复圆。乃以本天半径为一率,黄白大距之正弦为二率,初亏交周之正弦为三率,求得四率为正弦,检表得初亏距纬。又以复圆交周之正弦为三率,一率二率同前。求得四率为正弦,检表得复圆距纬。交周初宫、五宫为纬北,六宫、十一宫为纬南。又以并径之正弦为一率,初亏、复圆距纬之正弦各为二率,半径千万为三率,各求得四率为正弦,检表得初亏、复圆两纬差角。以两纬差角各与黄道高弧交角相加减,得初亏、复圆定交角。初亏限东,纬南则加,纬北则减;限西,纬南则减,纬北则加。复圆反是。若初亏、复圆无纬差角,即以黄道高弧交角为定交角。

  求初亏、复圆方位,食在限东者,定交角在四十五度以内,初亏下偏左,复圆上偏右。四十五度以外,初亏左偏下,复圆右偏上。適足九十度,初亏正左,复圆正右。过九十度,初亏左偏上,复圆右偏下。食在限西者,定交角四十五度以内,初亏上偏左,复圆下偏右。四十五度以外,初亏左偏上,复圆右偏下。適足九十度,初亏正左,复圆正右。过九十度,初亏左偏下,复圆右偏上。京师黄平象限恒在天顶南,定方位如此。在天顶北反是。

  求带食分秒,以本日日出或日入时分初亏或食甚在日入前者,为带食出地,用日入分。食甚或复圆在日出后者,为带食入地,用日出分。与食甚时分相减,余为带食距时。以一小时化秒为一率,一小时月距日实行化秒为二率,带食距时化秒为三率,求得四率为秒。以度分收之,为带食距弧。又以半径千万为一率,带食距弧之余切为二率,食甚距纬之余弦为三率,求得四率为余切,检表得带食两心相距之弧。乃以太阴全径为一率,十分为二率,并径内减带食两心相距之余为三率,求得四率,即带食分秒。

  求各省月食时刻,以各省距京师东西偏度变时,每偏一度,变时之四分。加减京师月食时刻,即得。东加,西减。

  求各省月食方位,以各省赤道高度及月食时刻,依京师推方位法求之,即得。

  绘月食图,先作横竖二线,直角相交,横线当黄道,竖线当黄道经圈,用地影半径度于中心作圈以象闇虚。次以并径为度作外虚圈,为初亏、复圆之限。又以两径较为度作内虚圈,为食既、生光之限。复于外虚圈上周竖线或左或右,取五度为识,视实交周初宫、十一宫作识于右,五宫、六宫作识于左。乃自所识作线过圈心至外虚圈下周,即为白道经圈。于此线上自圈心取食甚距纬作识,即食甚月心所在。从此作十字横线,即为白道。割内外虚圈之点,为食甚前后四限月心所在。末以月半径为度,于五限月心各作小圈,五限之象具备。

  日食用数

  太阳实半径五百零七,余见月食推日食法。

  求天正冬至,同日躔。

  求纪日,同月食。

  求首朔,同月食。

  求太阴入食限,与月食求逐月望平交周之法同,惟不用望策,即为逐月朔平交周。视某月交周入可食之限,即为有食之月。交周自五宫九度零八分至六宫八度五十一分,又自十一宫二十一度零九分至初宫二十度五十二分,皆为可食之限。

  求平朔,

  求太阳平行,

  求太阳平引,

  求太阴平引,以上四条,皆与月食求平望之法同,惟不加望策。

  求太阳实引,同月食。

  求太阴实引,同月食。

  求实朔,与月食求实望之法同。

  求实交周,与月食同。视实交周入食限为有食。自五宫十一度四十五分至六宫六度十四分,又自十一宫二十三度四十六分至初宫十八度十五分,为实朔可食限。

  求太阳黄赤道实经度,同月食。

  求实朔用时,同月食求实望用时。实朔用时,在日出前或日入后。五刻以外,则在夜,不必算。

  求食甚用时,与月食求食甚时刻法同。

  求用时春秋分距午赤道度,以太阳赤道经度减三宫,不足减者,加十二宫减之。为太阳距春分后赤道度。又以食甚用时变为赤道度,加减半周,过半周者减去半周,不及半周者加半周。为太阳距午正赤道度。两数相加,满全周去之。其数不过象限者,为春分距午西赤道度。过一象限者,与半周相减,余为秋分距午东赤道度。过二象限者,则减去二象限,余为秋分距午西赤道度。过三象限者,与全周相减,余为春分距午东赤道度。

  求用时春秋分距午黄道度,以黄赤大距之余弦为一率,本天半径为二率,春秋分距午赤道度之正切为三率,求得四率为正切,检表得用时春秋分距午黄道度。

  求用时正午黄赤距纬,以本天半径为一率,黄赤大距之正弦为二率,距午黄道度之正弦为三率,求得四率为正弦,检表得用时正午黄赤距纬。

  求用时黄道与子午圈交角,以距午黄道度之正弦为一率,距午赤道度之正弦为二率,本天半径为三率,求得四率为正弦,检表得用时黄道与子午圈交角。

  求用时正午黄道宫度,置用时春秋分距午黄道度,春分加减三宫。午西加三宫,午东与三宫相减。秋分加减九宫,午西加九宫,午东与九宫相减。得用时正午黄道宫度。

  求用时正午黄道高,置赤道高度,北极高度减象限之余。以正午黄赤距纬加减之,黄道三宫至八宫加,九宫至二宫减。即得。

  求用时黄平象限距午,以黄道子午圈交角之余弦为一率,本天半径为二率,正午黄道高之正切为三率,求得四率为正切,检表得度分。与九十度相减,余为黄平象限距午之度分。

  求用时黄平象限宫度,以黄平象限距午度分与正午黄道宫度相加减,正午黄道宫度初宫至五宫为加,六宫至十一宫为减,若正午黄道高过九十度,则反其加减。即得。

  求用时月距限,以太阳黄道经度与用时黄平象限宫度相减,余为月距限度,随视其距限之东西。太阳黄道经度大于黄平象限宫度者为限东,小者为限西。

  求用时限距地高,以本天半径为一率,黄道子午圈交角之正弦为二率,正午黄道高之余弦为三率,求得四率为余弦,检表得限距地高。

  求用时太阴高弧,以本天半径为一率,限距地高之正弦为二率,月距限之余弦为三率,求得四率为正弦,检表得太阴高弧。

  求用时黄道高弧交角,以月距限之正弦为一率,限距地高之余切为二率,本天半径为三率,求得四率为正切,检表得黄道高弧交角。

  求用时白道高弧交角,置黄道高弧交角,以黄白大距加减之,食甚交周初宫、十一宫,月距限东则加,限西则减。五宫、六宫反是。即得。如过九十度,限东变为限西,限西变为限东,不足减者反减之。则黄平象限在天顶南者,白平象限在天顶北;黄平象限在天顶北者,白平象限在天顶南。

  求太阳距地,详月食求地影半径条。

  求太阴距地,详月食求太阴半径条。

  求用时高下差,用平三角形,以地半径为一边,太阳距地为一边,用时太阴高弧与象限相减,余为所夹之角,求得对太阳距地边之角。减去一象限,为太阳视高。与太阴高弧相减,余为太阳地半径差。又用平三角形,以地半径为一边,太阴距地为一边,用时太阴高弧与象限相减,余为所夹之角,求得对太阴距地边之角。减去一象限,为太阴视高。与高弧相减,余为太阴地半径差。两地半径差相减,得高下差。

  求用时东西差,以半径千万为一率,白道高弧交角之余弦为二率,高下差之正切为三率,求得四率为正切,检表得用时东西差。

  求食甚近时,以月距日实行化秒为一率,一小时化秒为二率,东西差化秒为三率,求得四率为秒。以时分收之,为近时距分。以加减食甚用时,月距限西则加,限东则减,仍视白道高弧交角变限不变限为定。得食甚近时。

  求近时春秋分距午赤道度,以食甚近时变赤道度求之,余与前用时之法同。后诸条仿此,但皆用近时度分立算。

  求近时春秋分距午黄道度。

  求近时正午黄赤距纬。

  求近时黄道与子午圈交角。

  求近时正午黄道宫度。

  求近时正午黄道高。

  求近时黄平象限距午。

  求近时黄平象限宫度。

  求近时月距限,置太阳黄道经度,加减用时东西差,依近时距分加减号。为近时太阴黄道经度。与近时黄平象限宫度相减,为近时月距限。余同用时。

  求近时限距地高。

  求近时太阴高弧。

  求近时黄道高弧交角。

  求近时白道高弧交角。

  求近时高下差。

  求近时东西差。

  求食甚视行,倍用时东西差减近时东西差,即得。

  求食甚真时,以视行化秒为一率,近时距分化秒为二率,用时东西差化秒为三率,求得四率为秒。以时分收之,为真时距分,以加减食甚用时,得食甚真时。加减与近时距分同。

  求真时春秋分距午赤道度,以食甚真时变赤道度求之,余与用时之法同。后诸条仿此,但皆用真时度分立算。

  求真时春秋分距午黄道度。

  求真时正午黄赤距纬。

  求真时黄道与子午圈交角。

  求真时正午黄道宫度。

  求真时正午黄道高。

  求真时黄平象限距午。

  求真时黄平象限宫度。

  求真时月距限,置太阳黄道经度,加减近时东西差,依真时距分加减号。为真时太阴黄道经度。余同用时。

  求真时限距地高。

  求真时太阴高弧。

  求真时黄道高弧交角。

  求真时白道高弧交角。

  求真时高下差。

  求真时东西差。

  求真时南北差,以半径千万为一率,真时白道高弧交角之正弦为二率,真时高下差之正弦为三率,求得四率为正弦,检表得真时南北差。

  求食甚视纬,依月食求食甚距纬法推之,得实纬。以真时南北差加减之,为食甚视纬。白平象限在天顶南者,纬南则加,而视纬仍为南;纬北则减,而视纬仍为北。若纬北而南北差大于实纬,则反减而视纬变为南。限在天顶北者反是。

  求太阳半径,以太阳距地为一率,太阳实半径为二率,本天半径为三率,求得四率为正弦,检表得太阳半径。

  求太阴半径,详月食。

  求食分,以太阳全径为一率,十分为二率,并径太阳太阴两半径并。减去视纬为三率,求得四率即食分。

  求初亏、复圆用时,以食甚视纬之余弦为一率,并径之余弦为二率,半径千万为三率,求得四率为余弦,检表得初亏、复圆距弧。又以月距日实行化秒为一率,一小时化秒为二率,初亏、复圆距弧化秒为三率,求得四率为秒。以时分收之,为初亏、复圆距时。以加减食甚真时,得初亏、复圆用时。减得初亏,加得复圆。

  求初亏春秋分距午赤道度,以初亏用时变赤道度求之,余与用时同。后诸条仿此,但皆用初亏度分立算。

  求初亏春秋分距午黄道度。

  求初亏正午黄赤距纬。

  求初亏黄道与子午圈交角。

  求初亏正午黄道宫度。

  求初亏正午黄道高。

  求初亏黄平象限距午。

  求初亏黄平象限宫度。

  求初亏月距限,置太阳黄道经度,减初亏、复圆距弧,又加减真时东西差,依真时距分加减号。得初亏太阴黄道经度。余同用时。

  求初亏限距地高。

  求初亏太阴高弧。

  求初亏黄道高弧交角。

  求初亏白道高弧交角。

  求初亏高下差。

  求初亏东西差。

  求初亏南北差。

  求初亏视行,以初亏、东西差与真时东西差相减并初亏食甚同限则减,初亏限东食甚限西则并。为差分,以加减初亏、复圆距弧为视行。相减为差分者,食在限东,初亏东西差大则减,小则加。食在限西反是。相并为差分者恒减。

  求初亏真时,以初亏、视行化秒为一率,初亏、复圆距时化秒为二率,初亏、复圆距弧化秒为三率,求得四率为秒。以时分收之,为初亏距分。以减食甚真时,得初亏真时。

  求复圆春秋分距午赤道度,以复圆用时变赤道度求之。余同用时。后诸条仿此,但皆用复圆度分立算。

  求复圆春秋分距午黄道度。

  求复圆正午黄赤距纬。

  求复圆黄道与子午圈交角。

  求复圆正午黄道宫度。

  求复圆正午黄道高。

  求复圆黄平象限距午。

  求复圆黄平象限宫度。

  求复圆月距限,置太阳黄道经度,加初亏、复圆距弧,又加减真时东西差,依真时距分加减号。得复圆太阴黄道经度。余同用时。

  求复圆限距地高。

  求复圆太阴高弧。

  求复圆黄道高弧交角。

  求复圆白道高弧交角。

  求复圆高下差。

  求复圆东西差。

  求复圆南北差。

  求复圆视行,以复圆东西差与真时东西差相减并为差分,复圆食甚同限,则减;食甚限东,复圆限西,则并。以加减初亏、复圆距弧为视行。相减为差分者,食在限东,复圆东西差大则加,小则减。食在限西反是,相并为差分者恒减。

  求复圆真时,以复圆视行化秒为一率,初亏、复圆距时化秒为二率,初亏、复圆距弧化秒为三率,求得四率为秒。以时分收之,为复圆距分。以加食甚真时,得复圆真时。

  求食限总时,以初亏距分与复圆距分相并,即得。

  求太阳黄道宿度,同日躔。

  求太阳赤道宿度,依恒星求赤道经纬法求得本年赤道宿钤,余同日躔求黄道法。

  求初亏、复圆定交角,求得初亏、复圆各视纬,与食甚法同。以求各纬差角。各与黄道高弧交角相加减,为初亏及复圆之定交角。法与月食同。

  求初亏、复圆方位,食在限东者,定交角在四十五度以内,初亏上偏右,复圆下偏左。四十五度以外,初亏右偏上,复圆左偏下。適足九十度,初亏正右,复圆正左。过九十度,初亏右偏下,复圆左偏上。食在限西者,定交角在四十五度以内,初亏下偏右,复圆上偏左。四十五度以外,初亏右偏下,复圆左偏上。適足九十度,初亏正右,复圆正左。过九十度,初亏右偏上,复圆左偏下。京师黄平象限恒在天顶南,定方位如此,在天顶北反是。

  求带食分秒,以本日日出或日入时分初亏或食甚在日出前者,为带食出地,用日出分;食甚或复圆在日入后者,为带时入地,用日入分。与食甚真时相减,余为带食距时。乃以初亏、复圆距时化秒为一率,初亏、复圆视行化秒为二率,带食在食甚前,用初亏视行;带食在食甚后,用复圆视行。带食距时化秒为三率,求得四率为秒。以度分收之,为带食距弧。又以半径千万为一率,带食距弧之余切为二率,食甚距纬之余弦为三率,求得四率为余切,检表得带食两心相距。乃以太阳全径为一率,十分为二率,并径内减带食两心相距为三率,求得四率,为带食分秒。

  求各省日食时刻及食分,以京师食甚用时,按各省东西偏度加减之,得各省食甚用时。乃按各省北极高度,如京师法求之,即得。

  求各省日食方位,以各省黄道高弧交角及初亏、复圆视纬,求其定交角,即得。

  绘日食图法同月食,但只用日月两半径为度,作一大虚圈,为初亏、复圆月心所到。不用内虚圈,无食既、生光二限。

  凌犯用数,具七政恒星行及交食。

  推凌犯法,求凌犯入限,太阴凌犯恒星,以太阴本日次日经度,查本年恒星经纬度表,某星纬度不过十度,经度在此限内,为凌犯入限。复查太阴在入限各星之上下,如星月两纬同在黄道北者,纬多为在上,纬少为在下。同在黄道南者反是。一南一北者,北为在上,南为在下。太阴在上者,两纬相距二度以内取用;太阴在下者,一度以内取用。相距十七分以内为凌,十八分以外为犯,纬同为掩。太阴凌犯五星,以本日太阴经度在星前、次日在星后为入限,余与凌犯恒星同。五星凌犯恒星,以两纬相距一度内取用。相距三分以内为凌,四分以外为犯,余与太阴同。五星自相凌犯,以行速者为凌犯之星,行迟者为受凌犯之星。如迟速相同而有顺逆,则为顺行之星凌犯逆行之星,皆以此星经度本日在彼星前、次日在彼星后为入限。余同凌犯恒星。

  求日行度,太阴凌犯恒星,即以太阴一日实行度为日行度。凌犯五星,以太阴一日实行度与本星一日实行度相加减,星顺行则减,逆行则加。为日行度。五星凌犯恒星,以本星一日实行度为日行度。五星自相凌犯,以两星一日实行度相加减,顺逆同行则减,异行则加。为日行度。

  求凌犯时刻,以日行度化秒为一率,刻下分为二率,本日子正相距度化秒为三率,求得四率为分。以时刻收之,初时起子正,即得。

  求太阴凌犯视差,五星视差甚微,可以不计。以刻下分为一率,太阳一日实行度化秒为二率,凌犯时刻化分为三率,求得四率为秒。以度分收之,与本日子正太阳实行相加,为本时太阳黄道度。依日食法求东西差及南北差。

  求太阴视纬,置太阴实纬,以南北差加减之,加减之法,与日食同。即得。求太阴距星,以太阴视纬与星纬相加减,南北相同则减,一南一北则加。得太阴距星。取相距一度以内者用。

  求凌犯视时,以太阴一小时实行化秒为一率,一小时化秒为二率,东西差化秒为三率,求得四率为秒。收为分,以加减凌犯时刻,太阴距限西则加,东则减。得凌犯视时。


梦远书城(my285.pro)
上一页 回目录 回首页 下一页